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A fully spectral numerical scheme is presented for the unsteady, 
high Reynolds number, incompressible Navier-Stokes equations, 
in domains which are infinite or semi-infinite in one dimension. 
The domain is not mapped, and standard Fourier or Chebyshev 
expansions can be used. The handling of the infinite domain does 
not introduce any significant overhead. The scheme assumes that 
the vorticity in the f low is essentially concentrated in a finite region, 
which is represented numerically by standard spectral collocation 
methods. To accommodate the slow exponential decay of the veloci- 
ties at infinity, extra expansion functions are introduced, which are 
handled analytically. A detailed error analysis is presented, and two 
applications to direct numerical simulation of turbulent flows are 
discussed in relation with the numerical performance of the 
scheme. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

Spectral collocation methods have proved in many occasions 
their advantages for the direct numerical simulation of incom- 
pressible turbulent flows. Their high numerical accuracy and 
the lack of appreciable numerical viscosity induced by the 
spatial discretization are invaluable at the high Reynolds num- 
bers which are typical of turbulence or transition. Unfortunately, 
their use has been mostly limited to spatially periodic situations 
[1] or to domains which are bounded in their non-periodic 
directions, like channels [1-2]. The former are well adapted 
to Fourier representations, while the latter can be treated effi- 
ciently by mixed Fourier/Chebyshev schemes. In both cases, 
the transforms are done using an FFT algorithm. They typically 
consume 70-80% of the computational time of the problem, 
while most of the rest is spent in the solution of an elliptic sub- 
step, typically a Poisson equation, which" is introduced by the 
incompressible limit. In both Fourier and Chebyshev schemes, 
this second part is relatively fast. The matrix to be inverted is 
diagonal in the first case and tridiagonal in the second. 
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There are many flows of scientific or technical interest which 
are neither periodic nor bounded in one or more of their dimen- 
sions. Examples are wall boundary layers, free shear layers, 
and jets. In all of them there is at least one transverse dimension 
in which the flow is unbounded and has to be matched to an 
irrotational free stream. It is still possible to use spectral meth- 
ods in those cases by means of distorted grids and Chebyshev 
expansions [3], but the tridiagonal structure of the Poisson 
matrices is destroyed, and their solution is complicated. Malik 
et al. [4] address this difficulty using preconditioned iterative 
techniques for solving the implicit part of their algorithm, but 
they cannot avoid an unnecessary concentration of points at 
infinity. Alternatively, expansions in mapped Jacobi polynomi- 
als can be used [5-6]. They are well suited to infinite domains, 
but they have no fast transform equivalent to the FFF. In any 
case, the introduction of the boundary condition at infinity 
results in a substantial increase in the amount of work involved. 

Spalart et al. [5-6] noted that, if the vorticity formulation 
is used for the equations of motion, the irrotational stream 
behaves linearly and can be treated in a much simpler way than 
the nonlinear rotational part. Their expansions include extra 
exponential terms, whose coefficients are marched indepen- 
dently and whose mission is to represent these irrotational 
fluctuations. The rotational part of the flow is usually localized 
in a fairly compact part of the field (e.g., near the wall) and 
decays very fast at large distances. 

In this paper we extend their idea by noting that, if the 
spectral representation is only needed for compact quantities 
which decay very fast at infinity, as is the case of vorticity, it 
is possible to consider the problem in a finite domain and to 
extend those variables periodically across the numerical bound- 
aries with negligible discontinuity, in such a way that they can 
be represented as Fourier series and treated by standard spectral 
methods. The quantities that contain an irrotational component, 
such as the velocities, can then be expanded in Fourier series 
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plus exponential terms. We will show below that the coefficients 
of those extra terms need not be marched and that they can be 
computed directly from the Fourier part of the expansion. The 
result is a compact, fast code, that respects the efficiency of 
the FFT and that retains the simple structure of the Poisson 
matrices. The overhead introduced by the infinite domain is neg- 
ligible. 

The computational problem and the implementation of the 
boundary conditions are discussed in the next three sections. 
An analysis of the approximation errors is presented next, fol- 
lowed by some numerical experiments to test the robustness 
of the scheme to off-design situations, such as those in which 
the vorticity does not remain confined away from the numerical 
boundaries. The scheme is shown to be robust, in the sense 
that it handles smoothly, although incorrectly, conditions whose 
vorticity has not decayed completely at the edge of the computa- 
tional domain. 

We have implemented the scheme in two practical cases: a 
two-dimensional free mixing layer, periodic in one dimension 
and doubly infinite in the other [7], and a three-dimensional 
boundary layer, periodic in two dimensions and semi-infinite 
in the third [8]. The former is implemented as a double Fourier 
expansion, while the latter uses two Fourier directions and a 
Chebyshev expansion to account for the boundary condition at 
the wall. Both codes have been tested extensively, and the 
computational experience derived from their use is discussed 
briefly in the last section. The boundary layer code has been 
run both for turbulent simulations that can be compared to 
experimental results and for transition calculations, checked 
against known linear instability eigenvalues. The two-dimen- 
sional mixing layer has been checked against previous calcula- 
tions. We have run a parallel implementation of the shear layer 
code up to Peclrt numbers of 3 × 105. The simplicity of the 
new scheme was important for the successful parallelization of 
the code. 

The result is an evolution equation for each individual Fou- 
rier component. 

Assume now that most of the fluid is initially irrotational, 
that the vorticity is concentrated within a finite range of y, and 
that the entrainment at infinity vanishes or is incoming. Because 
vorticity is essentially convected by the fluid, its support re- 
mains approximately bounded for all times, with only viscous 
diffusion to spread it into the irrotational region. For high 
Reynolds numbers we can assume that the flow remains irrota- 
tional for large values of y. The velocity in an irrotational 
incompressible flow satisfies a Laplace equation, and each of 
its (j, k) Fourier components decays exponentially for large y as 

t3jk(y) ~ e -rbl, y" = (jo0-' + (k/3)-'. (2.4) 

Especially for those components with the lowest wave numbers, 
this decay is slow and the numerical domain has to be extended 
to large distances before the velocity can be considered to have 
decayed to its value at infinity. For example, if we consider a 
computational box (0, L,) × ( - L ,  L) × .... the lowest wavenum- 
ber in x is o~ = 27r/L,, and the magnitude of the velocities at 
y = _+L is of the order of exp( -2rrL /L , ) ,  which can only be 
made small at the expense of using very wide boxes such that 
L >> L~. Because of the compactness of the vorticity, much of 
the computational box is then irrotational. 

On the other hand, if the equations are written in terms of 
the vorticity, the decay of the important variables is much 
faster, and the domain can be kept smaller, provided that some 
procedure is implemented to handle the slow velocity decay in 
the irrotational region. In two dimensions, this can be done by 
using a vorticity-stream function (co, ~) formulation, 

O_~_wOt = ho, + ~ee V-'w, (2.5) 

2. THE COMPUTATIONAL SCHEME 

The governing equations for an incompressible flow can be 
written as 

0__y_v = H + 1 
Ot Ree V2v' (2.1) 

div v = 0, 

where v is the velocity vector and H includes the nonlinear 
convective terms and the pressure gradient. Re is a Reynolds 
number, which we assume to be large. We are interested in the 
case in which the flow is periodic in all directions except one, 
along which the computational domain is at least semi-infinite. 
We will call this last direction y and use a standard Fourier 
representation for the flow in (x, z), 

v(x, y, z) = ~ ~ 9jk(y)e i'-i~~+kO=', etc. 

where h,, includes the convective term, v. Vw, and all the body 
forces, but is independent of the pressure gradient. In addition, 
each integration step involves an elliptic equation 

7'-~0 = - w ,  u = O~O/Oy, v = -O~9/Ox, (2.6) 

which enforces continuity. Since the boundary conditions are 
(2.2) normally expressed in terms of velocity, they are applied on 

this second equation and can usually be reduced to ~b--, 0 as 
y ~ oo. An equivalent formulation for three-dimensional flow 
is given in [2] and also involves an evolution step for a vorticity- 
like vector, plus a Poisson equation that relates it to the veloc- 
ities. 

Assume that the flow is doubly infinite in y and periodic in 
all other directions. We can Fourier transform the flow variables 
in all the periodic dimensions, and we would like to do the 
same in y, but we are prevented from doing so by the infinite 

(2.3) domain. Assume, on the other hand, that we are only interested 
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FIG.  1. Behavior  at large dis tances  of  e ' (dashed line) and of  the solution 

o f  d ' - f / dy  2 - . f  = e ' with f ( -  +oo) ----> 0 (solid). 

in representing the vorticity variables, which are essentially 
zero beyond the finite range y E ( - L ,  L). From the point of  
view of  these variables, we can restrict our numerical domain 
to ( - L ,  L), assume a periodic extension in y and use a Fourier 
transform valid within the domain. The errors associated to this 
Fourier expansion are caused by the lack of continuity of  the 
variables, or of  their derivatives, at the two boundaries but, 
since the vorticities decay very fast, both the variables and their 
derivatives can be assumed to vanish at the boundary, and those 
errors are negligible. 

The same is not true of  the stream function, or of  the veloci- 
ties. Consider the Fourier transform of the three-dimensional 
equivalent of  the Poisson equation (2.6), 

°~4 '~  I k l 2 ~ k  = - - ~ k ( y ) ,  (2.7) c3y 2 

where k is the wave vector in the (x, z) plane. As y ~ +_~, 
&k----~ 0, and the solutions of  (2.7) approach those of  the homoge- 
neous equation, exp(---lkly), which decay much slower than 
the right-hand side (Fig. 1). Since the exact behavior of  the 
solution at large distances is known, it can be included explicitly 
in the numerical scheme, so that the remaining part of  the 
solution decays fast enough for the use of  standard expansions. 
To do this we note that we can construct, within y E ( - L ,  L), 
solutions to Eq. (2.7) which satisfy any consistent set of  bound- 
ary conditions and, in particular, solutions which are periodic 
in y with period 2L. Then, since any solution of  (2.7) can be 
written as the sum of any particular solution and of  some linear 
combination of  the homogeneous exponentials, we should be 

able to find an expansion in terms of a Fourier part and of the 
two known exponentials. 

Note that the mode Ikl = 0 is special and has to be treated 
differently. The homogeneous solutions for it are &0 = I and 
~00 = y and have to be matched to boundary conditions that 
are related to the velocities in the free streams. 

A complete code to compute the evolution of Eqs. (2.5)-(2.6) 
would contain a time marching step for Eq. (2.5), followed by 
a Poisson solver for Eq. (2.6). The latter can be formulated as 
a set of individual Helmholtz equations (2.7), which are solved 
by the mixed scheme outlined in the previous paragraph and 
which will be explained in detail in Section 4. 

There is another Poisson solver associated to each time 
marching step. It is usually convenient to treat the viscous term 
implicitly, and each step has the structure 

1 - - V - ' |  = o~'"' + 6th':,", 
At ~ 

0 ~ (  t l + l  ) 

Re / 
(2.8) 

with boundary conditions on co(y = +_ oo). However, the expo- 
nential factors associated to the Helmholtz operator in the left- 
hand side are +_(Re/At) ~/2 and are usually so large (~10  3) that 
they can be assumed to decay completely at _+L. As a conse- 
quence, the periodic solution to the Helmholtz equation can be 
taken to be the full solution, and no exponential correction is 
needed. Note that this assumption is needed if the compactness 
of  the vorticity is going to be maintained in time. In practice, 
even for the solutions of Eq. (2.7), the exponents are large 
enough that the tails are negligible for all but the few lowest 
x and z harmonics. 

3. SEMI-INFINITE DOMAINS 

The same scheme can be used in semi-infinite domains. In 
this case, the vorticities are expanded in terms of Chebyshev 
polynomials to accommodate the effect of the boundary at 
y = O. Note that there is no special discontinuity of the variables 
at y = L, which represents infinity and that there is no need 
for a singular grid deformation at that point. As a consequence, 
only half of  the Chebyshev collocation points are needed, lo- 
cated at 

y / L  = 1 - c o s ( j r r / 2 N ) ,  j = 0 . . .  N .  (3.1) 

This saves approximately one half of  the storage space and of 
the transformation cost and avoids an unnecessary accumulation 
of grid points near the boundary representing infinity. 

This expansion is equivalent to using a full Chebyshev expan- 
sion of  the variables in a larger domain y E (0, 2L), keeping 
only half of  the spectral components. There are many possible 
choices of  which components to select, but the two obvious 
ones are to use only even or odd polynomials. The implication 
is that the function being expanded is either even or odd about 
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TABLE I 

Type and Spatial Representation along 
Each Axis for Different Variables in a 
Three-Dimensional Boundary Layer Code 

Variable T y p e  Representation 

v~, 03 Even F-F-E 
v, Odd F-F-E 
~l, oJ3 Odd F-F-C 
co., Even F-F-C 

Note. F =- Fourier, E ~- exponential, C 
Chebyshev. 

the "mid-point"  at y = L and that either its derivative or its 
value should vanish at that point. While the choice is immaterial 
for variables which have actually decayed to zero at y = L, it 
has some effect in practical cases. Thus, if a variable co is 
being expanded in even Chebyshev polynomials, the expansion 
assumes that OoJ/Oy(L) = 0, and any non-zero value of  the 
actual derivative at that boundary appears as a discontinuity 
which induces a proportional error. Conversely, the errors in 
odd expansions are proportional to the value of  the variable 
itself at the boundary. The basic assumption of  our numerical 
scheme is that both errors are negligible. 

In problems involving several variables, the choice of  even 
or odd expansions is not completely free. Odd operators, such 
as O/Oy, change the parity of  a function so that, if an even 
expansion is used for co, the one for Ooa/Oy should be odd and 
vice versa. As an example, Table I contains the parity of  the 
expansions used for the different velocity and vorticity compo- 
nents in our three-dimensional turbulent boundary layer code. 
Note that the Helmhoitz equation (2.7) involves only variables 
with uniform parity. 

The last column of  Table I contains the "most  spectral" 
representation that is possible for each variable. Thus, while 
the vorticities can be expressed in fully spectral mode, the 
velocities can only be expanded in the two homogeneous direc- 
tions and need extra exponential terms in the y-direction. 

The exponential terms are always associated with the solution 
of  the Poisson step and, as is shown in the next section, can 
be computed algebraically when the boundary conditions are 
imposed on the velocities. This step can be considered as part 
of  the inverse (Fourier to physical) y-transform for the velocities 
and can be achieved in a number of  operations that is only 
proportional to the number of  points. The performance of  the 
FFT is not degraded. 

The pseudospectral step for the computation of  the nonlinear 
terms proceeds as usual. The convective terms have the general 
form v. VoJ. Both factors are transformed to physical represen- 
tation, including the exponential terms for v, and multiplied. 
Since VoJ is compact at large y, so is the product, and the 

full nonlinear term can be transformed back to Fourier or to 
Chebyshev by extending it periodically across the edge of the 
computational domain. There is no need for extra functions in 
that expansion. In contrast, there is no obvious way of  trans- 
forming the velocity back into spectral representation, but none 
is needed. 

There exists an extra difficulty when computing the Navier-  
Stokes equations in wall-bounded flows using a vorticity formu- 
lation. The physical boundary conditions cannot be imposed 
directly on the Helmholtz equations, because the former are 
expressed in terms of  velocities, while the latter involve vari- 
ables that contain derivatives of  at least one degree higher than 
those in the boundary conditions. In the 2D formulation, Eq. 
(2.5) requires a boundary condition for co at the wall while the 
physical boundary condition is that u = v = 0. In the 3D 
case the same problem exists, because one of  the Helmholtz 
equations is written for V-'v, where v is the velocity component 
normal to the wall, while the boundary conditions at the wall 
involve v and its first derivative. 

The approach that we have followed takes advantage of the 
linear character of  the Helmholtz equation to split the problem 
in two Dirichlet sub-problems. The final solution is built as a 
linear combination of  the solutions to these problems, in such 
a way that the desired boundary conditions are satisfied. A 
similar procedure for a 3D channel can be found in [2]. During 
this process the exponential terms have to be taken into account 
when determining the constants for the final linear combination. 

For the sake of  clarity, we develop in some detail the problem 
of a two-dimensional t ime-developing boundary layer on a flat 
plate. The plate is located at y = 0, and Eqs. (2.5)-(2.6) have 
to be solved with the boundary conditions 

~0=0,  O y = 0  a t y = 0 ,  

~,.---->1, co---~0 asy---->oo. 
(3.2) 

Once the variables are expanded in Fourier series in x, each 
component satisfies two coupled equations, one of  which is 
equivalent to the implicit step (2.8), while the other is the 
familiar Poisson equation (2.7), which can be written as 

- kT-co = - ~ ,  

= 

(3.3) 

where & and ~ are the Fourier components for wavenumber k, 
the modified wavenumber kr is defined by k2r = k" + Re~At, 
and ~, is related to the right-hand side of  Eq. (2.8). These 
equations satisfy boundary conditions similar to (3.2) in which 
the condition at infinity is substituted by 

(O'(oo) = 0 (3.4) 

for all wavenumbers except k = 0. The trouble is that no 
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boundary condition is available for the vorticity at y = 0, while 
there is one condition too many for the stream function. To 
circumvent this difficulty two problems are solved for each 
wave number. In the first one, Eqs. (3.3) are solved with homo- 
geneous boundary conditions 

~,(0) = t~[(oo) = &,(oo) = 0, &frO) = 0. (3.5) 

In the second problem, the first equation in (3.3) is substituted 
by its homogeneous equivalent, while the last boundary condi- 
tion in (3.5) is made inhomogeneous, 

&" - kr&.~ = 0,  co,(0) = 1. (3 .6 )  

It is clear that any linear combination of  the form 

co(y) = ~ &ke i~'~'/L. (4.3) 

Since the expansion assumes a periodic extension of co, there 
is in practice an effective discontinuity at the boundary, Aco = 
co(L) - co(-L), which induces an algebraic tail for the Fourier 
coefficients, A&k -- Aco/k. The discontinuity is assumed to be 
small and, in the case of the vorticities, typically decays as 
exp(-L2), or as an exponential with a large exponential factor. 
On the other hand, the same expansion cannot be used for the 
solution, f, since it contains slowly decaying terms of the form 
exp(_+yy), which cannot be neglected unless TL >2> 1. 

Consider the solution to Eq. (4.1) which satisfies periodicity 
conditions in the interval ( - L ,  L). It can be written as a Fourier 
series with coefficientsj~L.k = _&fl(y2 + k 2) and, since it can only 
differ from the full solution by a solution of  the homogeneous 
equation, we can write 

~b = tPt + ct}2 (3.7) f(Y) =fL(Y) + a ,  e~'-LI + a-e-~+L',  (4.5) 

satisfies Eqs. (3.3) and that c can be determined so that 
= 0 .  

The three-dimensional problem is treated in the same way. 
In this case the variables of  integration are the vorticity normal 
to the wall, co~, and the Laplacian of  the component of the 
velocity, V'-v. The equation for the normal vorticity does not 
present any special problem, and co~.(0) = 0 is imposed at the 
wall, while the equation for V-'v needs that one condition, v~.(0) 
= 0, be enforced in two steps. 

This difficulty is common to all vorticity formulations of  
wall bounded flows and has been addressed in terms very 
similar to those described here in [10, 11] for two-dimensional 
flows and in [2] for a three-dimensional one. Of interest in the 
present context is that the introduction of  exponential terms 
does not interfere with those well-known procedures. 

4. SPECTRAL SOLUTION OF A HELMHOLTZ EQUATION 
F O R  COMPACT FORCING 

We will discuss in detail the case of  a double-infinite domain. 
The semi-infinite Chebyshev case is entirely similar. The prob- 
lem is to solve the one-dimensional Helmholtz equation 

af2 y ~ f =  co(y), y E ( -0% oo), (4.1) 
o% 

with the boundary conditions f ~ 0 as  y --> - 0 %  where the 
right-hand side, co(y), is assumed to be essentially compact, 

co(y) negligible for lyl ~ L j <  L. (4.2) 

Because of  compactness, co(y) can be expanded in Fourier series 
in the interval y ~ ( - L ,  L), 

valid only inside y E ( - L ,  L). 
Finally, because of the compactness of the right-hand side, 

the solution to Eq. (4.1) has to be of the form 

f ( y )  ~ e -~, for y -> Ll, (4.6) 

so thatf ' (L)  --= df/dy(L)  = - y f ( L ) .  This, together with a similar 
relation at y = - L ,  is enough to determine the two unknown 
coefficients in (4.5), 

a .  = - (TfL(L) + f 'c(L))/2% (4.7) 

There is an equivalent expression for the semi-infinite case, in 
which the functions are expanded in even or odd Chebyshev 
polynomials. 

The computational cost of the exponential correction in 
(4.5)-(4.7) is just the calculation of  f A L )  and f'L(L), and the 
addition of the exponentials themselves at the collocation 
points. All of these are O(N) operations that do not add an 
appreciable overhead to the cost of  the inverse FFT. The expo- 
nential functions, which are the only expensive part of the 
operation, are pre-computed and stored, as is done with the 
sine tables for the FFT. 

5. T H E  A P P R O X I M A T I O N  E R R O R  

Consider the Fourier case. The procedure outlined above 
provides an exact solution of  Eq. (4.1) with a right-hand side 
that is equal to co in ( - L ,  L) and which vanishes identically 
outside. The errors in the computation arise from this neglect 
of the right-hand side outside the interval and from the approxi- 
mation of  co andfL by a truncated spectral series. Most of  those 
errors are common to other spectral methods, and they will not 
be discussed here (see, e.g., [12]). The only ones which are 
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new to our scheme are those due to the finite interval and the 
ones associated to the computation of the coefficients in front 
of the exponentials in (4.5). 

If the right-hand side decays fast as y ~ ±L, the error due 
to the finite interval should also be small. Assuming the most 
severe case of a smooth oJ with a characteristic length scale of 
L, it follows from a simple estimation, using the Green's func- 
tions of (4.1), that the magnitude of this error in f is at most 
of order co(L), which is negligible under the assumption that 
oJ(L) is small. 

With respect to the second source of error, note that, since 
the exponentials themselves are scaled so as to be at most O(1), 
the point-wise error induced on fly) is at most of the same 
order as the error in a_* which, because of (4.7), is itself of the 
same order as the error infL. Also, since the Fourier expansion 
offL is obtained from a smoothing operation on the expansion 
of w, the error in the former is at most proportional to that in 
the expansion of the latter. We have to consider its variation 
both with the number of harmonics N, and with the size of the 
numerical domain L. As we change N, and as long as there is 
no discontinuity in oJ or in its derivatives, the error decays 
faster than any power of the resolution N/L [12, Section 2]. In 
practice, this usually means an exponential decrease of the error 
with increasing N/L, which is maintained until it is dominated 
by some other source. In our case, another important contribu- 
tion to the error is the discontinuity discussed in the previous 
section, due to the lack of periodicity of oJ at y = -+L. This 
contributes a slow algebraic tail to the spectrum, whose magni- 
tude is O(o(L)), and which eventually becomes dominant at 
high resolutions. 

This is confirmed by Fig. 2a, which shows the maximum 

pointwise approximation error in the solution of a Helmholtz 
equation whose right-hand side is a gaussian, solved numeri- 
cally using the present scheme. At low resolutions the error is 
dominated by the truncation of the Fourier series representing 
the right-hand side and decreases exponentially with the square 
of the resolution (N/L)'-. This is the sloping line to the left of 
the figure. As the resolution increases and this source of error 
becomes smaller, it is eventually swamped by the errors due 
to the neglect of the tails of the forcing function outside the 
interval and to the discontinuity in the derivative of the gaussian 
as it is extended periodically beyond y = L. These errors depend 
almost exclusively on L and decrease only algebraically with 
the resolution. These are the approximately horizontal segments 
leaving the main line towards the right. 

The fact that the resolution error decreases faster than expo- 
nentially is a peculiarity of the gaussian forcing term, whose 
Fourier coefficients decay as exp(-k2). In practice, the forcing 
function is not usually as smooth and the error decays slower. 
The gaussian model is convenient numerically because the 
existence of an analytical solution to the Helmholtz equation 
simplifies the computation of the errors. 

Figure 2b displays the approximation error as a function of 
the size of the domain, for constant resolution N/L = 10. In 
this range, the error is dominated by the neglect of the tails of 
the forcing function and, except for algebraic factors, should 
be proportional to exp(-L2). This behavior is confirmed by the 
data in the figure. Note that the extremely small errors displayed 
here are only possible through the use of 128-bit floating 
point arithmetic. 

A consequence of these estimates is that, to keep errors small, 
L has to be chosen only large enough for the right-hand side 
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FIG.  3. Decay of the point-wise approximation error with the width of the computational box, for the same equation as in Fig. 2 and for different numbers 

of harmonics: (a) Exponentials  corrections are used in the approximation. (b) Exponentials are not used. Dashed line is the theoretical error due to the neglect 
of the exponential tail. 

of the Helmholtz equations to be adequately represented, in the 
sense that the discontinuity error at the boundary is less than 
the spectral truncation error. 

This is shown in Fig. 3a which displays a set of practical 
design curves for the optimization of the numerical algorithm. 
The problem is how to choose the optimum size of the computa- 
tional domain for a given fixed number of harmonics. For very 
short boxes the numerical resolution N / L  is high and the error 
is dominated by the edge effects, which decrease as exp(-L-'). 
This is the parabola on the left-hand side of the figure, which 
is common to all the curves. As the domain is made longer, 
the mesh becomes coarser and the normal truncation error 
becomes dominant. In between there is an optimum length for 
which the error is minimum. For the present example this occurs 
when e x p [ - ( N / L )  2] ~ exp(-L2), or L ~ N I/2. The minimum 
error is then proportional to exp(-N). 

Figure 3b shows the same curves for a scheme in which the 
exponential corrections are not applied to the solution. For large 
boxes, in which the error is controlled by the coarse meshing, 
both sets are identical. At high resolutions, however, the error 
is dominated by the neglect of the exponential tails and is 
always much larger than before. In fact, the truncation error is 
now proportional to exp(-yL),  and the optimum error occurs 
where TL ~ (N/L) 2 and, for y = 3, is proportional to 
exp(-  2.1N~/3). 

The benefits of present method are exhibited even for small 
boxes and few harmonics and not mere}y as an asymptotic 
trend. In the figure, for N = 16, the use of exponential correction 
decreases the optimum error by three orders of magnitude, 
compared to the conventional method. The advantage of the 
method depends on the magnitude of TL in the Helmholtz 

equation, but in the context of the use of spectral methods in 
fluid mechanics, this is typically of order unity. 

The rule of thumb is that the value of the vorticity at the 
outer boundary should be kept smaller than the amplitude 
of the Gibbs' ripples induced by the limited resolution. 
This criterion is easily met in turbulence simulations, where 
resolution tends to be marginal. On the other hand, the value 
of the velocity at the outer boundary is not relevant to the 
approximation, since it is handled exactly by the exponentials. 
The consequence is that it is possible to choose the boundary 
of the numerical domain very close to the edge of vorticity 
distribution, without regard to the irrotational perturbations. 
In fact, we routinely ran simulations in which vorticity blobs 
passed very near the outer boundary. This increased the 
danger that occasional vorticity excursions might impinge on 
the edge of the domain, violating the basic assumptions of 
the scheme. The consequences of these events are explored 
in the next section. 

6. R O B U S T N E S S  

An important characteristic of any code is its ability to re- 
spond "gracefully" to off-design situations. In the present case 
this means cases in which, for some reason, a vortex touches 
the outer boundary where the vorticity is assumed to have 
decayed to zero. Although there is no way, within the assump- 
tions of the method, for the code to respond correctly to this 
situation, it is important to make sure that it recovers from the 
error with minimum permanent effects. 

Such extreme excursions of the vorticity distributions are 
well known in turbulent flows. In two-dimensional situations, 
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FIG.  4. Vorticity (a) and velocity (b) distributions induced by a vortex pair as it hits the upper boundary of the computational domain. See text for discussion. 

especially wakes, they take the form of bound pairs of 
counterrotating vortices which fly away from the turbulent re- 
gion as almost independent entities [13]. In three-dimensional 
situations they are not as well documented in the literature, but 
we have observed them as hairpin vortices which occasionally 
extend far above the average location of the edge of the bound- 
ary layer. In both cases, the phenomenon appears seldom and 
seems to be of little dynamical significance. The stray vorticity 
is quickly dissipated by viscosity and has little effect on the 
body of the flow. It may therefore be acceptable to treat these 
occurrences numerically in a way that is not exactly right, as 
long as it does not interfere strongly with the accuracy of the 
rest of the computation. In any case, the problem is shared by 
any method that does not compute the flow to very long dis- 
tances with uniform resolution. 

To test the response of our method to such situations, we 
integrated the two-dimensional equations (2.5)-(2.6) in a 
box, periodic in x and extending to y E ( - ~ ,  oo). The 
velocities were assumed to decay at both infinities. The initial 
condition was chosen as a counterrotating vortex pair (or 
rather as an x-periodic array of such pairs) arranged so as 
to move in the y direction. The purpose was to observe the 
behavior of the code as the pair hit the upper boundary. 
One frame of the vorticity and velocity fields during the 
interaction is shown in Fig. 4. The pair crosses cleanly the 
boundary and reappears on the lower end of the box. The 
velocity field, however, is incorrect. Each of the two parts 
of the vortex pair, the one near the upper boundary and the 
one near the lower one, generates its own velocity field, 
with streamlines that close on themselves. The vorticity 
remains bounded and localized. 

All this is as it should. The vorticity is periodic, because it 
is expressed as a Fourier series and remains so during the 
interaction with the boundary. The vortices near the lower 
boundary are the periodic image of the vortex pair near the upper 

one. The velocity is not periodic, because of the exponential 
correction. In fact, the stream function generated by Eq. (4.5) 
is constructed so as to be the one induced by the vorticity inside 
the computational box, with strictly irrotational flow outside. 
Therefore, when the vorticity hits the boundary, it behaves as 
defined by its spectral expansion, with no special continuity 
errors, but any vorticity that exits the box ceases to have an 
effect and disappears from the calculation in the vicinity of that 
boundary. The flow field remains smooth during the interaction, 
although the velocity is clearly not the one corresponding to 
the actual vorticity distribution. 

The behavior of a Chebyshev expansion is similar. As a 
vortex approaches the upper boundary, it meets another one 
from the other half of the Chebyshev domain, whose sign 
is either equal or opposite, depending on the parity of the 
expansion. In either case, the induced velocities are only 
those of the vortices remaining inside the computational box, 
and they are generally of the correct sign to keep the vortex 
going out of the domain. In fact, as noted above, several 
collisions of this kind were observed during the simulation 
of our three-dimensional boundary layer, and some of them 
were studied in detail. In all cases the vortices left the 
domain smoothly. 

7. APPLICATION EXPERIENCE 

We have implemented this scheme in two codes for the direct 
numerical simulation of turbulence. The first one is an extension 
of an older two-dimensional mixing layer, including the passive 
advection and mixing of a scalar [14]. The purpose of the new 
set of simulations was to extend the study of the geometry of 
the mixing interface to a wider range of Peclrt numbers than 
was possible with the older finite differences code in serial 
machines. The need to recast the code in a parallel computer 
(a 128-node Intel hypercube at NASA Ames) led us to look 
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for a simpler implementation. The present scheme proved ideal, 
since efficient FFTs were available for the Intel machine and 
the new treatment of  the boundary conditions at infinity was 
straightforward enough as not to interfere with the intrinsic 
complication of  parallel programming. The parallelization strat- 
egy and the results are discussed elsewhere [7]. We will only 
be interested here in the numerical performance. 

The code was run on square boxes with uniform collocation 
grids for a double Fourier transform. The largest grid imple- 
mented was 2048 x 2048, before dealiasing using the 2/3 
rule. The initial conditions gave rise to four primary vortices 
that underwent two pairings. During the second pairing, the 
resulting vorticity structure grew until it filled about 60% 
of the width of the computational domain. At that moment 
some ripples appeared near the outer boundaries, but they 
never exceeded 1-2%. They disappeared shortly after the 
structure collapsed again. To check whether those ripples 
were due to limited resolution effects, or to the exponential 
velocity corrections, the same initial conditions were run 
without the exponential terms, effectively substituting the 
problem by a periodic array of  parallel shear layers. Although 
the details of  the flow were modified, the magnitude of  the 
ripples stayed essentially unchanged. From the comparison 
of  the two codes it was confirmed that the computational 
overhead of  the exponential corrections was negligible. Fi- 
nally, the evolution of  the integral quantities of  the layer 
were compared with those obtained by the code in [14], 
with entirely satisfactory agreement. 

The second experiment was the implementation of a three- 
dimensional boundary layer code, periodic in the two directions 
parallel to the wall. The results are described in [8]. Three- 
dimensional codes are less forgiving than two-dimensional 
ones, since they have intrinsic vorticity amplification mecha- 
nisms, and numerical errors can lead to blow up by mimicking 
the generation of real vortices. Part of our interest was to test 
whether any such numerical instability mechanism might be 
present. None was found. 

The structure of  this code is reflected in the discussion of  
Chebyshev schemes in the previous sections. Typical grids 
were 36 x 97 X 36 before dealiasing in x and z. No dealiasing 
was applied to the Chebyshev transform. The code was used 
to study the low Reynolds number regime near the relaminariza- 
tion limit. The outer boundary was adjusted roughly at 10 
displacement thickness, so that the classical boundary layer 
thickness filled most of  the computational domain. The behavior 
of  the r.m.s, vorticity and velocity fluctuations is shown in Fig. 
5, which displays the whole computational domain. Vorticity 
fluctuations fill more than two thirds of  the domain, but decay 
very fast above that limit. Velocity, on the other hand, decays 
much slower, and its exponential rate matches well the one 
predicted from the Helmholtz equation corresponding to the 
lowest Fourier wavenumber in the computational box. Note 
that, even at the edge of  the domain, the exponential decay 
is smooth. 
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and vorticity fluctuations in a three-dimensional boundary layer. The straight 
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8. CONCLUSIONS 

We have presented a modification of  the standard Fourier or 
Chebyshev spectral collocation method to include the handling 
of  boundary conditions extending to infinity along one direc- 
tion. The scheme is based on the assumption that the flow 
becomes irrotational at large distances and that the computa- 
tional domain contains all the vorticity. The irrotational velocity 
perturbations are treated analytically. We have shown that the 
resulting Overhead, compared to the fully periodic or bounded 
problems, is negligible, and that the approximation errors are 
comparable in both cases. We have also proved that the compu- 
tational boxes can be chosen quite close to the edge of the 
rotational region without ill effect and that the occasional fail- 
ures in the basic hypothesis, when a vortex touches the numeri- 
cal boundary, are handled smoothly by the scheme. Finally we 
have discussed briefly two applications to flows of practical 
interest, in which no unexpected numerical problems were iden- 
tified. 
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